T、B 淋巴细胞亚类的方法学建立及性能评价

张立霞1, 屈晨雪2

¹河北省邯郸市第一医院检验科 河北邯郸 ²北京大学第一医院 北京

【摘要】目的 T、B 淋巴细胞亚类的方法学建立及性能评价。方法 通过查阅文献确立 T、B 淋巴细胞 亚类的抗体组合,沿用溶血洗涤的标本处理方法。基于中华人民共和国卫生部《流式细胞术检测外周血淋 巴细胞亚群指南》推荐的方法,建立适用于流式细胞仪性能评价的测试方案,包括精密度、试剂稳定性、抗体量对结果的影响等。结果 T、B 淋巴细胞亚类的方法学初步建立,性能评价初步确立。结论 上述性能指标测试方法可靠,能够对 T、B 淋巴细胞亚类检测性能进行全面评价。该方法对于 T、B 淋巴细胞亚类检测性能验证有一定的指导意义。

【关键词】流式细胞仪;方法学建立;性能评价

Methodological establishment and performance evaluation of T and B Lymphocyte subclasses

Lixia Zhang¹, Chenxue Qu²

¹The First Hospital of Handan, Handan, Hebei, China ²Peking University first hospital, Peking, China

【Abstract】Objective To establish the methodology and evaluate the performance of T and B lymphocyte subsets. **Methods**: the antibody combination of T and B lymphocyte subclasses was established by consulting literature, and the method of hemolytic washing was used. Based on the method recommended by the State Food and drug administration, a test scheme suitable for the performance evaluation of FCM was established, including the precision, the stability of reagents ,the influence about the amount of antibody. **Results**: the methods of T and B lymphocyte subsets were established preliminarily, and the performance evaluation met the requirements. **Conclusion**: the above methods are reliable and can be used to evaluate the detection performance of T and B lymphocyte subsets. This method has certain guiding significance for the verification of the detection performance of T and B lymphocyte subsets.

Keywords Flow Cytometry; Methodology Establishment; Performance Evaluation

淋巴细胞亚群检测对于了解机体免疫功能十分重要。最新的研究显示,T、B 淋巴细胞中还有不同亚类如初始细胞、记忆细胞、活化细胞和效应细胞等等^[1]。不同疾病时,这些亚类的变化并不相同,因此检测 T、B 淋巴细胞亚类对于更准确地了解机体免疫功能,评估疾病的预后和转归有重要意义^[2]。本实验通过查阅文献^{[3]-[8]},确定 T、B 淋巴细胞亚类抗体组合。

1 材料与方法

1.1 仪器与试剂

BD 公司 FACSCanto II流式细胞仪(仪器编号:

MZXY-LS-002)及配套淋巴细胞精细分型抗体,新鲜 EDTA 抗凝全血。

1.2 方法

(1) 精密度

新鲜外周血标本,配置三组(T1、T2、B),每组上机检测三次,计算各群亚类的百分比的变异系数。

(2) 试剂稳定性

预混试剂,分别在试剂配置的第二天(24h)和 第三天(48h)加入新鲜外周血,并设置对照组(现 配的抗体加同一新鲜外周血标本),标本每天取三 个,以检测试剂稳定性。计算各群亚类的百分比的 偏倚。

(3) 抗体量对结果的影响

取三个新鲜外周血标本,每个设置两组,一组 加抗体推荐量的半量,一组加抗体推荐量的全量, 计算各群亚类的百分比的偏倚。

2 结果

2.1 精密度

各群亚类的百分比的变异系数均<10%。其中CV值为0-5%的有: CD3+CD4+、Central Memory4、Naive4、 Effector Memory4、 Effector4、 CD4+/HLADR+、 Central Memory8、 Naive8、 CD8+/HLADR+、 CD8+/CD28-、 CD8+/CD28+、

Th17-like、Th1-like、Naïve、PlasmaBlast、Plasma、Transitional; CV值为5%-10%的有EffectorMemory8、Effector8、Treg、Th2-like、Th9-like、non-Switch、Switch.(见表一A,表一B)

2.2 试剂稳定性

试剂:在试剂放置的 24h,亚类百分比偏倚均 <50%;在试剂放置的 48h,三组样本的 Central Memory4、Naive4、EffectorMemory4、Effector4 和 CentralMemory8 均变化较大。(见表二 A,二 B)

2.3 抗体量对结果的影响(见表三A,三B)

除一组 EffectorMemory4 偏倚为 45.8%, CentralMemory8 为 38.9%, CD8+/CD28-为 46.2%, Transitional 为 50%外, 其余均<30%。

表一A

T1 (%)	CD3+	CD3+CD4+	CentralMemory4	Naive4	${\tt EffectorMemory4}$	${\tt Effector 4}$	CD4+/HLADR+	CD8+	CentralMemory8	Naive8	EffectorMemory8	Effector8	CD8+/HLADR+	CD8+/CD28-	CD8+/CD28+
11	22. 4	34. 5	47.7	21	32.9	0.2	29. 5	49.1	15. 3	23. 6	0.5	4.7	41.3	28	21. 2
22	22. 4	36. 3	47.8	21. 2	30. 9	0.2	27. 5	48.3	15. 5	24	0. 5	5. 7	41.7	26. 9	21. 4
33	22. 5	36. 9	47.8	19.6	32. 5	0.2	27. 9	48.2	15. 7	24	0.6	5. 7	41.8	26. 9	21. 2
均数	22.4	35. 9	47.8	20.6	32. 1	0.2	28.3	48.5	15. 5	23. 9	0. 5	5. 4	41.6	27.3	21. 3
SD	0.0	1.0	0.0	0.7	0.9	0.0	0.9	0.4	0.2	0.2	0.0	0.5	0.2	0.5	0.1
CV	0.2%	2.8%	0.1%	3. 5%	2. 7%	0.0%	3.1%	0.8%	1. 1%	0.8%	8.8%	8.8%	0.5%	1. 9%	0.4%

表一B

T2 (%)	Treg	Th17-like	Th2-like	Th9-like	Th1-like	B (%)	Naive	non-Switch	Switch	PlasmaBlast	Plasma	Transitional
	4. 9	9.80	8.9	6.0	28. 7		63. 7	12.7	18.6	0.3	0.1	3.8
	4.2	9. 4	8.9	5. 0	31. 3		65.8	12.5	16. 3	0.3	0. 1	3.8
	4.3	9. 1	10.5	4. 2	29. 1		62. 0	11.3	20.6	0.4	0. 1	3. 5
均数	4.5	9. 4	9.4	5. 1	29. 7		63.8	12. 2	18. 5	0.3	0. 1	3. 7
SD	0.3	0.3	0.8	0.7	1.1		1.6	0.6	1.8	0.0	0.0	0. 1
CV	6. 9%	3. 0%	8.0%	14. 5%	3.8%		2.4%	5. 1%	9. 5%	14. 1%	0.0%	3.8%

表二 A

	CD3+	CD3+CD4+	CM4	Naive4	EM4	Effector4	CD4+/HLADR+	CD8+	CM8	Naive8	EM8	Effector8	CD8+/HLADR+	CD8+/CD28-	CD8+/CD28+
10月24日配置抗体															
10月25日															
标本1. 预混抗体	15. 8	34	38. 7	48. 7	10.8	1.8	5. 1	33. 5	6. 9	32. 5	4.3	24. 6	16. 2	14.8	18. 7
标本1. 现用现配抗体	15. 5	33. 1	43. 1	48. 4	9.8	1. 5	5. 5	33. 6	9	33. 6	3. 9	21. 3	16. 4	14. 7	18. 9
偏倚(%)	1. 9%	2. 7%	-10. 2%	0.6%	10. 2%	20.0%	-7. 3%	-0.3%	-23. 3%	-3.3%	10. 3%	15. 5%	-1. 2%	0. 7%	-1.1%
标本2. 预混抗体	11.7	47.9	41.7	40.9	17. 2	0. 2	10. 2	38. 2	20. 5	31.8	3. 7	5	19. 2	9	29. 2
标本2. 现用现配抗体	11.8	47. 2	48. 2	38. 3	13. 4	0. 2	11. 2	38. 4	23. 8	31. 9	3. 2	4. 4	19. 3	9. 3	29. 1
偏倚(%)	-0.8%	1.5%	-13.5%	6.8%	28. 4%	0.0%	-8. 9%	-0.5%	-13. 9%	-0.3%	15. 6%	13. 6%	-0. 5%	-3. 2%	0.3%
标本3. 预混抗体	17. 7	48. 2	59. 6	20. 8	29. 4	0. 3	11. 1	42	9	27. 9	10. 9	14. 2	26. 5	19. 4	22. 7
标本3. 现用现配抗体	17. 9	46. 4	61.5	19. 6	28	0. 2	11. 4	43. 5	13	28. 3	9.8	13. 5	26. 5	20. 1	23. 4
偏倚(%)	-1.1%	3.9%	-3. 1%	6. 1%	5. 0%	50.0%	-2.6%	-3. 4%	-30. 8%	-1.4%	11. 2%	5. 2%	0.0%	-3.5%	-3.0%
10月26日															
标本4. 预混抗体	20.8	46. 7	14. 1	28. 2	41	16. 7	5. 5	47. 6	1. 4	17. 3	10. 5	39	10. 5	27. 2	20. 4
标本4. 现用现配抗体	20. 5	47. 3	34. 3	43. 6	20. 3	1.8	5. 7	46. 7	5. 5	20. 4	10. 9	36. 9	11. 9	27	19. 7
偏倚(%)	1. 5%	-1.3%	-58.9%	-35. 3%	102.0%	827.8%	-3.5%	1. 9%	-74. 5%	-15. 2%	-3. 7%	5. 7%	-11.8%	0. 7%	3. 6%
标本5. 预混抗体	23. 2	52. 9	9. 7	21. 9	40.7	27. 7	2. 4	41. 5	1.7	32.8	3.8	2. 2	11. 1	5. 4	36. 1
标本5. 现用现配抗体	24	53. 3	30. 5	48. 6	19. 9	0. 9	2. 8	40. 7	7	42	3. 5	2. 2	11. 9	5. 4	35. 3
偏倚(%)	-3. 3%	-0.8%	-68. 2%	-54. 9%	104. 5%	2977.8%	-14. 3%	2.0%	-75. 7%	-21.9%	8. 6%	0.0%	-6. 7%	0.0%	2.3%
标本6. 预混抗体	14	52. 2	12. 8	29. 5	39. 5	18. 2	4. 9	37. 5	1.5	37.8	1. 6	8. 1	6. 9	7. 3	30. 2
标本6. 现用现配抗体	13. 9	52. 7	31.7	45. 8	21. 5	1. 1	5. 6	37. 1	8.8	49.6	1. 3	8. 3	7. 6	7. 3	29.8
偏倚(%)	0. 7%	-0.9%	-59.6%	-35. 6%	83. 7%	1554. 5%	-12.5%	1. 1%	-83. 0%	-23. 8%	23. 1%	-2.4%	-9. 2%	0.0%	1.3%

表二 B

T2	Treg	Th17-like	Th2-like	Th9-like	Th1-like	В	Naive	non-Switch	Switch	PlasmaBlast	Plasma	Transitional
	4. 3	7. 3					60. 4					
	3. 9	7. 1	7	6. 3	9.8		60. 5	14. 8	18. 3	0. 9	0. 9	3. 5
	10. 3%	2.8%	7. 1%	3. 2%	-7.1%		-0. 2%	14. 9%	-8. 7%	-11.1%	-22. 2%	-5. 7%
	5. 4	11.5	8. 5	10. 2	13. 5		38. 5	33. 8	24. 1	0. 1	0	1. 9
	4.8	10. 1	8. 5	11	13.6		40. 2	31. 4	24. 4	0. 1	0	2
	12.5%	13. 9%	0.0%	-7.3%	-0.7%		-4.2%	7.6%	-1.2%	0.0%	0.0%	-5.0%
	4. 1	10.9	9. 2	10. 9	25. 4		65. 6	8. 2	19. 1	0.4	0. 1	6. 1
	4. 1	9. 6	8. 3	11.5	24.8		64. 6	8. 3	20. 1	0.3	0. 1	6. 1
	0.0%	13. 5%	10. 8%	-5. 2%	2. 4%		1. 5%	-1.2%	-5.0%	33. 3%	0. 0%	0.0%
	6. 0	12. 2	5. 2	8. 1	10. 1		67. 2	17. 7	12. 2	0	0	0. 5
	7. 4	11. 6	5	6. 4	11. 7		65. 3	18. 3	14. 1	0	0	0. 7
	-18.9%	5. 2%	4. 0%	26.6%	-13. 7%		2. 9%	-3. 3%	-13.5%	0.0%	0.0%	-28.6%
	5. 4	13. 1	6. 4	7. 9	8. 9		51. 4	30. 1	17	0	0	0. 4
	5. 2	12	5. 8	8	9		52. 7	29. 2	16. 5	0	0	0. 4
	3.8%	9. 2%	10. 3%	-1.3%	-1.1%		-2.5%	3. 1%	3. 0%	#DIV/0!	#DIV/0!	0.0%
	4. 0	9. 3	5. 8	5. 7	15. 2		49	12. 4	31. 3	0. 1	0	0. 3
	3. 6	7. 4					47					
	11. 1%						4. 3%				#DIV/0!	-25.0%

表三 A

全半量比较	CD3+	CD3+CD4+	CM4	Naive4	EM4	Effector4	CD4+/HLADR+	CD8+	CM8	Naive8	EM8	Effector8	CD8+/HLADR+	CD8+/CD28-	CD8+/CD28-
标本7+半量	22. 2	68. 1	54. 9	35. 1	17. 5	0. 1	4. 4	25	9. 6	15. 9	11. 7	22	20. 3	17. 1	12. 3
标本7+全量	21. 3	70	50	38	12	0. 1	4. 1	23. 1	15. 7	17. 6	16. 3	22. 9	26. 3	11.7	11. 4
偏倚(%)	4. 2%	-2.7%	9.8%	-7.6%	45.8%	0.0%	7. 3%	8. 2%	-38. 9%	-9. 7%	-28. 2%	-3.9%	-22.8%	46. 2%	7. 9%
标本8+半量	20. 5	63. 2	35. 7	21. 3	30. 9	0. 1	21	27. 3	17	9. 6	16	18	43. 1	16. 7	10.6
标本8+全量	23. 4	64. 3	37.7	27. 3	34. 9	0. 1	21. 7	28. 6	17.6	12. 5	16. 1	18. 1	42.8	16. 7	11. 9
偏倚(%)	-12.4%	-1.7%	-5. 3%	-22.0%	-11.5%	0.0%	-3. 2%	-4.5%	-3.4%	-23. 2%	-0.6%	-0.6%	0. 7%	0.0%	-10. 9%
标本9+半量	19. 4	52. 3	28. 3	43.4	26.8	1. 5	15. 9	41.5	4. 6	20. 6	12. 6	45	26. 2	27. 9	13. 6
标本9+全量	21. 1	52. 9	32	44.5	28. 8	2	18. 3	43	5. 2	20.8	15. 1	48	26	27. 4	15
偏倚(%)	-8. 1%	-1.1%	-11.6%	-2.5%	-6. 9%	-25.0%	-13. 1%	-3.5%	-11.5%	-1.0%	-16.6%	-6. 3%	0.8%	1.8%	-9.3%

表三 B

T2	Treg	Th17-like	Th2-like	Th9-like	Th1-like	В	Naive	non-Switch	Switch	PlasmaBlast	Plasma	Transitional
	4.4	9. 7	6. 5	5. 2	9		60	12. 2	20. 6	0	0	2. 4
	3. 7	11. 2	7.7	6. 4	9. 6		64. 2	15. 4	17. 7	0	0	1.6
	18. 9%	-13. 4%	-15.6%	-18.8%	-6. 3%		-6. 5%	-20.8%	16. 4%	#DIV/0!	#DIV/0!	50.0%
	2. 7	6	2	4	33		39. 8	33. 7	22. 7	0	0	1 5
	3. 3	9. 6	3. 2	4. 9	33. 3		45. 2			0	0	1. 5 1. 7
	-18. 2%						-11. 9%		4. 6%	#DIV/0!	#DIV/0!	-11.8%
	4. 2	4. 6	5.8	2.6	24.8		52. 3	38. 1	6. 3	0. 1	0. 1	1. 9
	6. 0	6. 1	7. 2	3. 5	28. 1		56. 1	39. 3	8. 2	0. 1	0. 1	2. 2
	-30.0%	-24.6%	-19.4%	-25. 7%	-11. 7%		-6.8%	-3.1%	-23. 2%	0. 0%	0.0%	-13.6%

3 讨论

通过查阅文献确立了 T、B 淋巴细胞亚类的抗体组合。关于淋巴细胞亚类性能的评价,国际上还没有公认的方法和要求。本实验从精密度,试剂和样品稳定性,抗体量对结果的影响及生物参考区间等方面进行验证。流式细胞仪的检测结果会被用于了解机体免疫功能,评估疾病的预后和转归。因此,应该更关注可能影响检测结果准确性的性能指标。

为此,中华人民共和国卫生部在 2011 年发布了医药行业标准《流式细胞术检测外周血淋巴细胞亚群指南》,评价项目涵盖了流式细胞仪的质量控制,包括光路,荧光分辨率,荧光补偿及性能评估(准确度,特异度,灵敏度和精密度)^[9]。本实验基于指南里的性能评估内容,加上实际工作中检测结果的影响因素,从精密度、试剂和样本稳定性、抗体量对结果的影响以及生物参考区间四方面进行实验,

为医学实验室评价流式细胞术检测外周血淋巴细胞 亚类的性能提供了一套详尽的参考方法^[10]。

参考文献

- [1] 骆必伟,谢勇,袁晓东,田佩凯,欧希,林泽伟等。中央型和效应型记忆 T 细胞亚群在肝癌患者肿瘤浸润淋巴 细胞中的分布[J].中华肝胆外科杂志,2016,7(22):445-449.
- [2] 张智贤,何秋莹,方伟祯,鲍蕴文,曾华等。CD19、CD27 和 CD38 标记的 B 淋巴细胞亚群 在类风湿关节炎患者外周血中的变化及意义[J].中华微生物学和免疫学杂志,2015,5(35):382-386.
- [3] Ditadi A, Sturgeon CM, Tober J, et al. Human definitive haemogenic endothelium and arterial vascular endothelium represent distinct lineages. Nat Cell Biol 2015; 17:580.
- [4] Mauri C, Menon M. Human regulatory B cells in health and disease: therapeutic potential. J Clin Invest 2017; 127:772.
- [5] Kurosaki T, Kometani K, Ise W. Memory B cells. Nat Rev Immunol 2015; 15:149.
- [6] Yu VW, Saez B, Cook C, et al. Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow. J Exp Med 2015; 212:759.
- [7] Johnson JL, Georgakilas G, Petrovic J, et al. Lineage-Determining Transcription Factor TCF-1

- Initiates the Epigenetic Identity of T Cells. Immunity 2018; 48:243.
- [8] Lu Y, Wang Q, Xue G, et al. Th9 Cells Represent a Unique Subset of CD4+ T Cells Endowed with the Ability to Eradicate Advanced Tumors. Cancer Cell 2018; 33:1048.
- [9] 王小林,李昂,杨硕。流式细胞仪性能评价方法的建立[J]。国际检验医学杂志,2015,5(36): 1366-1369.
- [10] Andreas Boldt, Stephan Borte, Stephan Fricke.Eight-Color Immunophenotyping of T-,B-,and NK-Cell Subpopulationsfor Characterization of Chronic Immunodeficiencies. [J] Cytometry Part B (Clinical Cytometry) 2014,86B:191–206.

收稿日期: 2021年11月30日

出刊日期: 2021年12月31日

引用本文: 张立霞, 屈晨雪, T、B 淋巴细胞亚类的方法学建立及性能评价[J]. 国际医药研究前沿, 2021, 5(1): 19-22.

DOI: 10.12208/j.imrf.20210008

检索信息: RCCSE 权威核心学术期刊数据库、中国知网(CNKI Scholar)、万方数据(WANFANG DATA)、Google Scholar 等数据库收录期刊

版权声明: ©2021 作者与开放获取期刊研究中心 (OAJRC)所有。本文章按照知识共享署名许可条款发表。http://creativecommons.org/licenses/by/4.0/

OPEN ACCESS